¿­Ê±

¿­Ê±

½ñÈÕÌìÆø£º

ʦ×ʲ½¶Ó

ʦ×ʲ½¶Ó

ÓÍÆøÌ↑·¢¹¤³Ìϵ

ÕÔÈʱ£

Ðû²¼Ê±¼ä£º2016-09-20ȪԴ£º
¡¡¡¡

image.png

ÐÕÃû£º ÕÔÈʱ£  

Ö°³Æ£º ½Ì ÊÚ£¨²©µ¼£©  


½ÌÓýÓëÊÂÇéÂÄÀú£º

   1990-1994  ºÓÄÏ´óѧ  »¯Ñ§»¯¹¤×¨Òµ                             ±¾¿Æ

   1994-1997  Öйú¿ÆѧԺн®»¯Ñ§Ñо¿Ëù  Óлú»¯Ñ§×¨Òµ   ˶ʿ

   2003-2006  ¿­Ê±£¨±±¾©£©  ÓÍÆøÌ↑·¢×¨Òµ      ²©Ê¿

   1997-2003  ÖÐʯ»¯ÖÐÔ­ÓÍÌ￱̽¿ª·¢Ñо¿Ôº    ÖúÀí¹¤³Ìʦ¡¢¹¤³Ìʦ

   2009-2010  Ë¹Ì¹¸£´óѧÄÜÔ´×ÊÔ´¹¤³Ìϵ           »á¼ûѧÕß

   2011-2013  Ë¹Ì¹¸£´óѧÄÜÔ´×ÊÔ´¹¤³Ìϵ           ¸±Ñо¿Ô±£¨Research Associate£©

   2006-ÖÁ½ñ   ¿­Ê±£¨±±¾©£© Î÷ϯ

   

СÎÒ˽¼ÒÖ÷Ò³£º

   µç×ÓÓÊÏ䣺 zhaorenbao@vip.sina.com£»zhaorb@cup.edu.cn¡¡¡¡¡¡¡¡

   ÁªÏµµç»°£º 010-89739120, 18911226229¡¡¡¡

   

ËùÔÚϵËù£º ÓÍÆøÌ↑·¢¹¤³Ìϵ    

Ñо¿Æ«Ïò£º Ìá¸ß²ÉÊÕÂÊ¡¢³íÓÍ»ðÇýÀíÂÛÓëÒªÁì¡¢·ÇͨÀýԭλ¸ÄÖÊ»úÀí  

½ÌѧÇéÐΣº±¾¿ÆÉú¿Î³Ì¡¶Ìá¸ß²ÉÊÕÂÊ»ù´¡¡·£»Ñо¿Éú¿Î³Ì¡¶Ìá¸ß²ÉÊÕÂÊÔ­ÀíÓëÒªÁì¡·  


´ú±íÐÔÂÛÎÄÖø×÷£º

[1] Zhao, RB; Sun, ZQ; Sun, XG; et al. Effect of secondary water body on the in-situ combustion behaviors[J]. FUEL, 2022, 316:1-12.

[2] Zhao, RB; Wang, TT; Chen, LJ ; et al. Evolution of the Pseudo-Components of Heavy Oil during Low Temperature Oxidation Processes[J]. ENERGIES, 2022, 15 (14):1-14.

[3] Zhong, J; Zhao, RB; Ouyang, WZ; et al. Molecular Dynamics Simulation of the Soret Effect on Two Binary Liquid Solutions with Equimolar n-Alkane Mixtures[J]. ACS OMEGA, 2022, 7(1):518-527.

[4] Zhao, RB; Heng, MH; Chen, CJ; et al. Catalytic effects of Al(2)O(3 )nano-particles on thermal cracking of heavy oil during in-situ combustion process[J]. Journal of Petroleum Science & Engineering, 2121, 205: 1-10.

[5] Zhao RB; Yang J; Zhao CF*; et al. Investigation on coke zone evolution behavior during a THAI process[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107667.

[6] Zhao RB*; Yu, S; Yang, J; et al. Optimization of well spacing to achieve a stable combustion during the THAI process[J]. Energy, 2018,151(3): 467-477.

[7] Zhao RB*; Li, BC; Yang, XY; et al. Analysis of a feasible field THAI pattern by the derivation of scaling criteria and combustion experiments[J]. Journal of Petroleum Science & Engineering, 2018,168(4): 380-389.

[8] Zhao RB*; Xu MF; Yan, JL; et al. Non-constant Diffusion Behavior for CO2 Diffusion into Brine: Influence of Density-driven Convection[J]. Journal of Solution Chemistry, 2018, 47(12):1926-1941.

[9] Zhao RB*; Zhang CH; Yang FX. Influence of temperature field on rock and heavy components variation during in-situ combustion process[J]. Fuel, 2018, 230(5): 244-257.

[10] Zhao RB*; Li BC; Yang J; et al. Temperature prediction via reaction heat calculation of burned pseudo-components during in-situ combustion[J]. Fuel, 2018, 214(2): 264-271.

[11] Zhao RB; Sun JD; Fang Q; et al. Evolution of Acidic Compounds in Crude Oil during In Situ Combustion[J]. Energy & Fuels, 2017, 31(6): 5926-5932.

[12] Zhao RB*; Wei YG; Wang ZM; et al. Kinetics of Low-Temperature Oxidation of Light Crude Oil[J]. Energy & Fuels, 2016, 30(4): 2647-2654.

[13] Zhao RB*; Xia XT; Luo WW; et al. Alteration of Heavy Oil Properties under in Situ Combustion: A Field Study[J]. Energy & Fuels. 2015, 29(10): 6839-6848.

[14] Zhao RB*; Chen YX; Huang RP; et al. An experimental investigation of the in-situ combustion behavior of Karamay crude oil[J]. Journal of Petroleum Science and Engineering. 2015,127(1): 82-92.

[15] Zhao RB*; Tang GQ; Kovscek AR*. Modification of heavy-oil rheology via alkaline solutions[J]. Journal of Petroleum Science and Engineering. 2013, 103: 41-50.

[16] ÕÔÈʱ£*£¬ºâÃ÷ºÆ£¬¼ÖÓ¨Ó¨. ´º¹âÓÍÌï³íÓ;®Í²²ôÏ¡½µð¤ÊÒÄÚʵÑéÑо¿[J]. Î÷°²Ê¯ÓÍ´óѧѧ±¨(×ÔÈ»¿Æѧ°æ). 2018, 33(2): 72-76.

[17] ÕÔÈʱ£*£¬°½Îľý£¬Ð¤°®¹ú. CO2ÔÚÔ­ÓÍÖеÄÀ©É¢¼ÍÂɼ°±äÀ©É¢ÏµÊýÅÌËãÒªÁì[J]. ¿­Ê±Ñ§±¨(×ÔÈ»¿Æѧ°æ). 2016, 40(3): 136-142. EI

[18] ÂÞçâçâ, ÕÔÈʱ£*, ÏÄÏþæõÈ. Ì«ÑôÄܹرղ۳íÓÍÈȲÉÊÖÒÕÔÚн®ÓÍÌïÓ¦ÓõĿÉÐÐÐÔÆÊÎö[J]. Î÷°²Ê¯ÓÍ´óѧѧ±¨, 2015, 30(5): 64-68.

[19] ÕÔÈʱ£*, ¸ßɺɺ, Ñî·ïÏéµÈ. ³íÓÍ»ðÉÕÀú³ÌÖеĻÄܲⶨҪÁì[J]. ʯÓÍѧ±¨, 2013, 34(6): 1125-1130. EI

[20] Zhao RB, Ke WQ, Wu YH, et al. Enhanced Heavy Oil Recovery from Fractured Vuggy Carbonated Reservoir of Tahe Oilfield with N2/CO2 Gas Mixture. SPE 132247, 2010. EI

[21] ÕÔÈʱ£*, ËﺣÌÎ, ÎâÑÇÉúµÈ. ¶þÑõ»¯Ì¼Âñ´æ¶ÔµØ²ãÑÒʯӰÏìµÄÊÒÄÚÑо¿[J]. Öйú¿Æѧ: ÊÖÒÕ¿Æѧ, 2010, 40(4): 378-384. SCI

[22] Zhao RB, Hou YL, Ke WQ, and Yue XA. Stability and water control of nitrogen foam in bulk phase and porous media[J]. Petroleum Science, 2009, 6: 181-187. SCI

[23] ÕÔÈʱ£. CO2¶Ô¹èËáÄÆ£­±ûÏ¡õ£°·ÈÜÒº¾ÛºÏÐÐΪ¼°²úÆ·ÐÔ×ÓµÄÓ°Ïì. ¸ßµÈѧУ»¯Ñ§Ñ§±¨, 2009, 30(3): 596-600. SCI/EI

[24] ÕÔÈʱ£, ÔÀÏæ°², ¿ÂÎÄÆæµÈ. µªÆøÅÝĭϵͳÎȹÌÐÔµÄÓ°ÏìÒòËØÑо¿. ʯÓÍѧ±¨, 2009, 30(1): 84-87, 91. EI

[25] ÕÔÈʱ£, ÔÀÏæ°², ÎâÑǺì. µªÆøÔÚË®±¥ºÍÑÒÐÄÖеÄÉøÁ÷¼ÍÂÉ. ¼ªÁÖ´óѧѧ±¨(¹¤Ñ§°æ), 2009, 39(1): 244-248. EI

[26] Zhao RB, Yue XA, Wu YH, et al.. Flow characteristics and reaction properties of carbon dioxide in microtubules and porous media[J]. Chinese Science Bulletin, 2008, 53(21): 3409-3415. SCI

[27] ÕÔÈʱ£, ÔÀÏæ°², ÎâÑÇÉú. ÎÛÄàÓëÑÎËáÔÚ¶à¿×½éÖÊÖеķ´Ó¦¼°ÂþÑܼÍÂÉ. ¼ªÁÖ´óѧѧ±¨(¹¤Ñ§°æ), 2008, 38(5): 1252-1256. EI

[28] ÕÔÈʱ£, ÔÀÏæ°², ÎâÑǺìµÈ. ΢¹ÜÖеÄËữ·´Ó¦:³Áµí¼°½çÃæЧӦ. ¸ßµÈѧУ»¯Ñ§Ñ§±¨, 2008, 29(4): 793-798. SCI/EI

[29] ÕÔÈʱ£, ÔÀÏæ°², ºî¼ªÈðµÈ. ×ÔÉúÆøÄý½ºÅÝĭϵͳµ¥Òº·¨Éµ÷ÆʼÁ¿ÉÐÐÐÔÑо¿. ÓÍÌﻯѧ, 2005, 22(4): 362-365.

[30] ÕÔÈʱ£, ÔÀÏæ°², ÐíÈó诵È. Ë®²£Á§Äý½ºÔöÇ¿ÅÝĭϵͳµÄÐÔÄÜ. ¼ªÁÖ´óѧѧ±¨(¹¤Ñ§°æ), 2005, 35(6): 572-576. EI

[31] ÕÔÈʱ£, ÔÀÏæ°², Õź귽. AMPS¹²¾ÛÎïÈÜÒºµÄÐÔ×Ó¼°ÔÚ¶à¿×½éÖÊÖеÄÁ÷¶¯ÌØÕ÷. ʯÓÍѧ±¨, 2005, 26(2): 890-897. EI

·¢Ã÷רÀû£º

[1] ÕÔÈʱ£; ÉÛÅíÌÎ; ºâÃ÷ºÆ; Ñî½Ü. Ò»ÖÖÓýό´øµÄÐÎòÑо¿»ðÇýЧ¹ûµÄÒªÁì[P]. ZL 2018 1 0755335.2ÊÚȨÈÕÆÚ2020-01-10  

[2] ³íÓ;®Í²¾ÙÉý½µÕ³Ä£Äâ×°Öü°ÒªÁì, ZL 2012 1 0330083.1

[3] ȼÉÕ³ØʵÑé×°Öá¢Äܹ»²â¶¨»î»¯ÄܵÄʵÑé×°ÖúÍÕÉÁ¿ÒªÁì, ZL 2014 1 0360145.2L

[4] ³íÓÍȼÉÕÀú³ÌÖлÄܵÄÕ¹ÍûÒªÁì, ZL 2014 1 0289625.4

[5] ¿ÉÖظ´Ê¹ÓõÄÈýά´ó³ß´ç»ðÉÕʵÑé×°ÖÃ, ZL 2016 1 0152521.8


¼ç¸º£¨ÈÏÕ棩ÏîÄ¿£º

  [1]   ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð£¨ÃæÉÏ£©£ºÇ°·½ÍƽøËÙÂʵÄÕ¹ÍûºÍ»ðÇ»ÔÚÈýά¿Õ¼äÖÐÑÝ»¯µÄ¿ØÖÆ»úÖÆ̽Ë÷£¬52274052£¬£¨ÔÚÑУ©

  [2]   ×ÔÖÎÇø¸ßÌõÀíÈ˲ÅÒý½øÏîÄ¿£º»ùÓÚ´¹Ïò»ðÇý¾®ÍøÌõ¼þϳ¬³íÓ͵Äԭλ¸ÄÖʸ¨Öú¿ª·¢»úÀíÑо¿, ÈÏÕæÈË£¨ÔÚÑУ©

  [3]   ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð£¨ÖصãÏîÄ¿£©£ºÖÂÃÜÓÍ´¢²ãÌá¸ß²ÉÊÕÂÊÒªº¦ÀíÂÛÓëÒªÁìÑо¿ 51334007£¬¼ÓÈëÈË£¨ÔÚÑУ©

  [4]   ÍŽá»ù½ðÏîÄ¿£¨ÅàÓýÏîÄ¿£©£º»ùÓÚʵ¼ùÊ®ºÅ¿Õ¼äʵÑéµÄʯÓÍ×é·ÖSoretЧӦÑо¿  U1738108£¬ÍŽá¼ç¸ºÈË £¨ÔÚÑУ©

  [5]   ¹ú¼Ò¿Æ¼¼ÖØ´óרÏ³íÓÍ»ðÇýÌá¸ß²ÉÊÕÂÊÊÖÒÕÑо¿ÓëÓ¦ÓÃ-ºìdz1»ðÇý»úÀíÉ¼°¿ó³¡µ÷¿Ø¶Ô²ßÑо¿  ZX20160112£¬×Ó¿ÎÌâÈÏÕæÈË £¨Í¨¹ýÑéÊÕ)

  [6]   ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð£¨ÃæÉÏ£©£ºCO2 ÔÚ¶à¿×½éÖÊÖеÄÀ©É¢»úÀí¼°ÆäÓëÇ°ÔµÍƽøËÙÂʵÄÁ¿»¯¹ØϵÑо¿£¬51274217£¬ÈÏÕæÈË £¨ÒѽáÌ⣩

  [7]   ¹ú¼Ò973ÏîÄ¿£ºÌá¸ßÖÂÃÜÓÍ´¢²ã²ÉÊÕÂÊ»úÀíÓëÒªÁìÑо¿  ZX20150238£¬×Ó¿ÎÌâÈÏÕæÈË £¨ÒѽáÌ⣩

  [8]   ½ÌÓý²¿Áôѧ»ù½ð£¬CO2ÔÚ²î±ðÈÜÒºÇéÐμ°¿×϶½éÖÊÖÐÀ©É¢ËÙÂÊÑо¿  ZX20120288£¬ÈÏÕæÈË £¨ÒѽáÌ⣩

  [9]   ÖÐʯ»¯¿Æ¼¼²¿£¬ÄÚÃɱ¡»¥²ã³íÓÍÓͲػðÉÕÓͲãÊÔÑéÑо¿  ZX20160396£¬ÏîÄ¿ÈÏÕæÈË £¨ÔÚÑУ©

  [10]   ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬»ðÇýÀú³ÌÖÐÔ­ÓÍ×é·Ö¼°·ÅÈÈÁ¿µÄת±ä¼ÍÂÉÑо¿ HX20170491£¬ÈÏÕæÈË£¨ÔÚÑУ©

  [11]   ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬ºìdz1¾®Çø»ðÉÕÇýÓÍÎïÐÔÏÂÏÞʵÑéÑо¿ HX20170852£¬ÈÏÕæÈË£¨ÔÚÑУ©

  [12] ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬ºìdz»ðÇýȼÉÕÀú³ÌÖÐÔ­ÓÍ×é·Ö¶Ô»î»¯ÄܵÄÓ°ÏìÑо¿ HX20130496, ÈÏÕæÈË£¨ÒѽáÌ⣩

  [13] ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬¼ª7¾®ÇøÎàÍ©¹µ×é³íÓÍÓͲػðÇý¿ª·¢ÊÒÄÚʵÑéÑо¿ HX20140612,  ÈÏÕæÈË£¨ÒѽáÌ⣩

  [14] ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬·ç³ÇÓÍÌïÆë¹Å×éÓͲػðÇýÀú³Ì·´Ó¦¶¯Á¦Ñ§Ä£×Ó¼°ÊýֵģÄâÒªº¦²ÎÊýµÄ²â¶¨Ñо¿ HX20110326,  ÈÏÕæÈË£¨ÒѽáÌ⣩

  [15] ÖÐʯÓÍ´ó¸ÛÓÍÌï·Ö¹«Ë¾£¬´ó¸ÛÓÍÌï×¢¿ÕÆøµÍÎÂÑõ»¯/¸ßÎÂȼÉÕÈÈÁ¦Ñ§ÐÐΪÑо¿ HX20110387£¬ÈÏÕæÈË£¨ÒѽáÌ⣩

  [16] ÖÐʯÓÍн®ÓÍÌï·Ö¹«Ë¾£¬³íÓÍ»ðÇýÖÐÎȹÌȼÉÕµÄÓ°ÏìÒòËØʵÑéÑо¿ HX20160197£¬ÈÏÕæÈË£¨ÒѽáÌ⣩


¿ÆÑнÌѧ½±Àø£º

 

  [1] »ô½ø, Ëïиï, ʩСÈÙ,Ñî·ïÏé, ÕÔÈʱ£µÈ. ×¢ÕôÆû·ÅÆú¸ßÕ³ÓͲØת»ðÇýÒªº¦ÊÖÒÕÑо¿ÓëÓ¦Óà ÖйúʯÓͺͻ¯¹¤×Ô¶¯»¯Ó¦ÓÃЭ»áÒ»µÈ½±, 2020Äê

  [2] ÔÀÏæ°²£¬ÕÅÁ¢¾ê£¬ÕÔÈʱ£µÈ. µÍÉøÉ°ÑÒÓͲØÉøÁ÷»úÀí¼°Ìá¸ß²ÉÊÕÂÊÊÖÒÕ. ½ÌÓý²¿¿Æ¼¼Ç°½øÒ»µÈ½±£¬2014Äê.

  [2] ÔÀÏæ°², ÆëÔ¾´º, ÕÅÁ¢¾ê, Å˺êÎÄ, ÕÔÈʱ£µÈ. µÍÉøÉ°ÑÒÓͲØÉøÁ÷»úÀí¼°Ìá¸ß²ÉÊÕÂÊÊÖÒÕ. ÖйúʯÓͺͻ¯Ñ§¹¤ÒµÍŽá»á¿Æ¼¼Ç°½øÒ»µÈ½±£¬2013Äê.

 

   

Éç»áÓëѧÊõ¼æÖ°£º

Fuel¡¢Energy & Fuels¡¢JPSE¡¢Journal of Analytical and Applied Pyrolysis¡¢Journal of Industrial and Engineering Chemistry¡¢Petroleum Science¡¢¡¶¿­Ê±Ñ§±¨£¨×ÔÈ»°æ£©¡·Éó¸åÈË


×÷ÓýѧÉú£ºÒѽáҵ˶ʿÉú62ÈË£¬Ö¸µ¼²©Ê¿Éú5ÈË


¡¡¡¡

µØµã£º±±¾©ÊвýƽÇø¸®Ñ§Â·18ºÅ Óʱࣺ102249

ʯ¹¤
ѧԺ
Éè¼Æ
´óÈü

°æȨËùÓУº¿­Ê±(±±¾©)

TOP
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿